E6B Flight Computer

Gary White

Some Terms

Solving for Wind

- Wind is a Vector
- It has both Direction and Speed
- Imagine a boat going across a river

Wind (cont.)

- The Solution - Find Corrections in Our Aircraft Heading so Actual Course = Desired Course
- Compute Vector Equation, or
- Trial and Error

\author{

- Here the Desired Course Has Been Altered by the Wind
 - This Results in a Actual
 Course (we call that a Track) That is Different
}

Some Terms

- True or Magnetic - Units Applied to Headings, Course, or Track
- Heading - What the Aircraft is Flying Normally we Always Fly a Magnetic Heading
- Course - the Line of Distance and it's Angle Measured from Start to Finish (This is What We Plot on our Charts)
- Track - What We Actually Fly - Hopefully it is the Same as the Desired Course

Winds

- Wind Velocity (Speed Provided In Knots Direction Provided as True)
- Note this is a Vector
- $\mathrm{MH}=\mathrm{TH}+/-$ Magnetic Variation
- TH = TC +/- Wind Drift

Exercise 1 - Lay Out a Course Line and Determine True Heading and Ground Speed

- Given - Wind (from FA at 6,000) $=0730+14$
- From San Marcos (KHYI) to Yoakum (T85)
- Distance =
- True Course =

Exercise 1 (cont.)

- Now Apply Wind to Determine True Course
- Our True Airspeed (TAS) is 90 knots (in this case the true in the TAS has nothing to do with direction, but is the speed through the air - more on computing TAS later)
- Turn Compass Rose until 70 degrees is under the True Index
- Set Grommet Over 100
- Draw a Line Down from 130 to the Grommet (see next page)

Exercise 1 (cont.)

Exercise 1 (cont.)

- Now Turn to place 132 under True Course Index and Slide Until Tail of Wind is on the 90 degree Line (see next chart)
- Read Wind Correction Angle as 18 degrees Left
- True Heading (TH) = True Course (TC) +/- WCA
- Left WCA is Minus
- Therefore TH = 132-18 = 114 degrees
- We Also Solved Ground Speed as 72 knots

WCA

Exercise 2 - Now Solve for Magnetic Heading (MH)

- We Fly Using Magnetic Reference, not True
- Variation Between Magnetic and True
- Here it is 4.5 degrees East

Lines of Magnetic Variation

- $\mathrm{MH}=\mathrm{TH}+/-$ Variation (VAR)
- If VAR is East it is minus
- $\mathrm{MH}=\mathrm{TH}(114)-\operatorname{VAR}(5)=109 \mathrm{deg}$

Exercise 3 - Find the Compass Heading (CH)

- Deviations (DEV) Between What Compass Indicates and Actual Magnetic Heading
- Electrical Currents from Avionics and Equipment Disturb Magnetic Field Around the Compass

FOR (MAGNETIC)	N	30	60	E	120	150
STEER (COMPASS).	0	28	57	86	117	148
FOR (MAGNETIC)	S	210	240	W	300	330
STEER (COMPASS).	180	212	243	274	303	332

- In This Case ~ 3 DEV
- Therefore, CH = MH (109) - DEV (4) = 105

Some Final Thoughts on the Wind Side

- Good for Flight Planning
- Winds Aloft Forecasts (FA) Notoriously Bad
- Likely Need to Revise Once Flight Begins
- Draw Wind With an Arrow Pointing to Grommet
- Use Pencil, Not Ink

Computer Side

- Solve for TAS, Density Altitude
- Time, Distance and Rate Problems

Example 4 - Find Density Altitude

- Flying at Leadville, CO
- Airport Elevation 9,934'
- Say OAT is 85 deg F - ~29.5 deg C
- Density Altitude ?
- Use Airspeed Corr. Window
- Set 30 deg C against 10,000' - Read 13,800’

Example 5 - Compute TAS

- Without Changing, Find TAS if KIAS = 90 knts
- KIAS is Inner Circle, Outer Circle is KTAS
- Opposite the 90 (inside) read KTAS = 112 knts
- Increases Landing and Takeoff Distance
- Decreases Rate of Climb
- May Be Beyond Airplane's Service Ceiling

Time, Distance, Rate

- All Are of the Form:

- Always Put A and C on Outer Ring,
- Read B or D on Inside Ring,
- e.g., $A=3, B=4, C=6, D=$?

Answer

In Class Problems

- Ground Speed
- Time Between Points
- Fuel Rate and Fuel Usage

