Aircraff Performance

VICTOR.

AR

1 21

Gary White BARRYMORE

VI GTOR

Engine and Propeller

- Engine It's What Makes the Whirly Thing Turn!
- Propeller It Actually Produces the Thrust

Engine Power

- Rated in Brake Horse Power (bhp)
- 1 bhp = 745.5 Watts
- E.g., Diamond Engine is 100 bhp
- Power is Under Ideal Conditions
- Best Engine Power is Obtained When Optimum Air to Fuel Ratio is Obtained

Air Fuel Ratio (AFR) =
$$rac{Mass Air}{Mass Gasoline}$$

Engine Power

- As We Increase in Altitude Air Density (Mass) Decreases
 – Hence Power Decreases
- Look at Diamond Chart
- What is Difference in Power Between 2,000' to 8,000' at Standard Temperature (15 deg C)?
- Optimum Cruise Altitude (Minimized Fuel Burn at Reasonable KTAS) is About 8,000'

Press Alt	RPM	20° C Below Standard Temp			Te	Standard mperatu	i Ire	10° C Above Standard Temp			
π		%bhp	KTAS	GPH	%bhp	KTAS	GPH	%bhp	KTAS	GPH	
2,000	2800	87	128	8.8	83	129	8.7	80	130	8.6	
	270 <mark>0</mark>	78	123	7.7	74	124	6.8	72	125	6.6	
	2600	69	<mark>118</mark>	6.4	66	119	6.2	64	120	6.1	
5	2500	61	<mark>113</mark>	5.9	59	113	5.7	57	114	5.6	
20 2	2400	54	107	5.3	52	108	5.2	50	109	5.1	
4,000	2800	79	126	8.6	76	127	8.6	74	129	6.8	
	2700	71	121	6.6	68	122	6.4	66	123	6.2	
	2600	63	116	6	61	117	5.9	59	118	5.7	
	2500	56	111	5.5	55	112	5.4	53	113	5.3	
	2450	53	108	5.3	51	109	5.1	50	110	5.1	
6,000	2800	73	125	6.7	70	126	6.5	69	128	6.4	
	2700	66	120	6.2	64	121	6	62	123	5.9	
3 d	2600	59	115	5.7	57	116	5.6	56	117	5.5	
	25 <mark>0</mark> 0	53	110	5.2	51	111	<mark>5</mark> .1	50	112	5	
8,000	2800	68	124	6.4	66	125	6.2	65	127	6.1	
	2700	61	119	5.9	60	121	5.8	5 9	122	5.7	
	2600	55	114	5.4	54	116	5.3	53	117	5.3	
	2550	53	112	5.2	51	113	5.1	50	114	5.1	

Propeller Efficiency

Figure 6-6 End view of propeller elements.

- Typically We Fly GA Airplanes That Have Fixed or Variable Pitch
- The Prop is an Airfoil
- Pitch (Angle of Attack) Determines Performance
- There are Climb and Cruise Props
- A Variable Pitch Let's Us Optimize Performance

Fixed vs Constant Speed

Overall Propeller Efficiency Is Perhaps 80-85% Maximum

Takeoff Performance

Landing and Roll Distance

- Landing Does Not Include Roll-Out
- Need to Consider Gradient of Runway
 - Every +/- 1% Gradient Impacts by +/- 10%
- Tables Include 50'

Height above MSL	ft.	0	1000	2000	3000	4000	5000	6000	7000
	(m)	(0)	(305)	(610)	(914)	(1219)	(1524)	(1829)	(2134)
Landing	ft.	1360	1387	<mark>141</mark> 7	1447	1478	<mark>1</mark> 511	1545	1580
Distance	(m)	(415)	(423)	(432)	(441)	(450)	(461)	(471)	(482)
Landing Roll Distance	ft.	661	680	701	722	744	767	791	815
	(m)	(201)	(207)	(214)	(220)	(227)	(234)	(241)	(248)

Table 4 - Landing and Rolling Distances for Heights Above MSL

NOTE

Poor maintenance condition of the airplane, deviation from the given procedures as well as unfavorable outside conditions (i. e. high temperature, rain, unfavorable wind conditions, slippery runway) could increase the landing distance considerably.

Weight

- Most Takeoff and Landing Charts are at Gross Weight
- Reduction of Weight (by 10%) will Improve Performance ~ 10%

Wind

- Headwind, Tailwind and Crosswind
- For Safety, Take Off Into the Wind
 - Only Excepting if Less Than 5 knots, and You Have Sufficient Runway
 - You, as PIC, have Right to Refuse Tailwind
 - Always Refuse a Tailwind Landing
 - Tailwind (Every 2 knots Increases Ground Roll by 10%)
- Crosswind
 - Airplane Has Maximum Demonstrated Crosswind
 - You, Depending on Experience, Might Not be Safe at This Maximum

Crosswind Component

Climb Performance

- Factors Influencing Are:
 - Weight and Balance
 - Density Altitude
 - Airplane Configuration (flaps, gear)

Climb Performance (cont.)

- Weight
 - Increased Weight Decreases Climb Performance
- Balance
 - Aft CG (Within Limits Reduces Aircraft Effective Weight and Increases Climb Performance)
 - Forward CG (Within Limits Increases Aircraft
 Effective Weight and Reduces Climb Performance)
 - Outside of CG Range You Become a Test Pilot!

Climb Performance (cont.)

• Density Altitude

- Built Into Climb Charts in POH

- Aircraft Configuration
 - Again See Climb Charts
 - Pay Attention to Notes
- Don't Try to Be a Test Pilot

Climb Performance (cont.)

Climb Objectives

- Clear Obstacles
- Get to Cruise Altitude in Shortest Time
- Reduce Wear or Load on Engine

Cruise Performance

- Factors
 - Density Altitude
 - Weight and Balance
 - Desired Speed
 - Desired Fuel Economy
- Fuel Reserve
 - FAA Says:
 - 30 Minutes Day VFR
 - 45 Minutes Night Vfr

Cruise (cont.)

 May Need More Than One Chart

- Typically Cruise at ~65%
- From TAS (121 knts) Go to GPH Chart – Read 6 GPH

Diagram :	for true	airspeed	(TAS)	calculation	at	selected	power	level
Lo rea op carre	101 000	anopood	(ourourourori	-	00100100	001101	

Press Alt ft	RPM	20° C Below Standard Temp			Standard Temperature			10° C Above Standard Temp			
		%bhp	KTAS	GPH	%bhp	KTAS	GPH	%bhp	KTAS	GPH	Exar
6,000	2800	73	125	6.7	70	126	6.5	69	128	6.4	1
	2700	66	120	6.2	64	121	6	62	123	5.9	
	2600	59	115	5.7	57	110	5.0	56	117	5.5	Res
	2500	53	110	5.2	51	111	5.1	50	112	5	

Fuel Consumption

 Fuel Gauges Are an Aid to Landing in New, Exciting, and Unexpected Places

Fuel Management

- Do's
 - Keep a Log of Fuel Usage
 - Keep Track of Engine Run Times and Different Fuel Consumptions (Takeoff, Enroute, Runup, Taxi, Maneuvering, Alternate)
 - Know the POH
 - Fly at Specified Power Settings
 - Be Conservative
 - Drain and Take a Fuel Sample Before Each Flight
 - 'Stick' the Fuel Tanks
 - Be Conservative in Fuel Reserves

Fuel Management (cont.)

- Don'ts
 - Trust the Fuel Gauge
 - Push to the Limits on Range
 - Assume Line Staff Filled Your Plane with Proper Fuel

Weight and Balance

- Next Session
- Read Below
- <u>http://www.faa.gov/library/manuals/aviation/</u> <u>pilot_handbook/media/PHAK%20-</u> <u>%20Chapter%2009.pdf</u>
- Weight and Balance Example Using Diamond DA20-C1 (online)